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I. The analytic index of elliptic operators: Abstract operator theory

I.1. Fredholm Operators

In the following we will denote by H and H;,i € N seperable complex Hilbert spaces with scalar
product (-, -) ;. But usually we write just (-, -) when the space is obvious from the context. The
corresponding norm is written as ||| H,

. Definition: ‘“‘Closed Operator”
A linear operator A: H; D dom A — im C H, is called closed iff its graph

grA:={(v,Av) |lvedomA}C H X H, (1.1)
is closed. The set of densely defined, closed operators will be denoted by

C(H,, H,) = { A:dom A - H, m=H1,grAclosed} 1.2)
From now on we will always mean densely defined, closed operator when we say closed operator.

. Remark:

e Ifdom A = H,, A is closed if and only if A is continuous. In other words this means that
C(H,, H,) contains Z(H,, H,).

e For A € C(H,, H,), althoughker A C H| is always closed,im A C H, need not be closed.

e The cokernel is:

coker A := H,/im A 2.1)
e If A is closed, so is its adjoint: A* € C(H,, H,); because gr A* is a rotation of (gr A)™.

. Lemma: Finite Cokernel
If the cokernel of a closed operator is finite dimensional, its image is closed.

. Definition: “Fredholm Operator”
A closed operator is called Fredholm iff it has finite dimensional kernel and cokernel. We
denote the set of Fredholm operators by

F(H,,H,) = { A € C(H|, H,) | dimker A + dim coker A < oo } 4.1
For A € #(H |, H,) its index is defined as
ind A := dimker A — dim coker A = dimker A — dimker A* € Z 4.2)

For bounded Fredholm operators we write %, ,(H, H,) := (H |, H,) N L(H,, H,).
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Note: If A € #(H,, H,) Lemma 3 (Finite Cokernel) tells us that im A is closed.

5. Definition: “Semi-Fredholm Operator”

If A € C(H,, H,) only satisfies the weaker assumption, that ker A is finite dimensional and
im A is closed, we call it semi-Fredholm.

6. Lemma: Semi-Fredholm Condition

A € C(H,, H,) is semi-Fredholm iff every bounded sequence (x,,),cn in dom A with (Ax,,)
convergent in H, has a convergent subsequence.

Proof (6)

“=>” (x,) C H, ||x,|l £ 1, (Ax,) = yin H,.

_ Jker coker _ ker ker |2 coker |2 coker ker :
Decompose x,, = x,,” + x,° ', x,, € ker A, [|x,” |7 + [, |7 < 1, x;,7°7 Lx,*". Since
ker A is finite dimensional, we may assume that (xl,‘,er) — x*'. Thus we may assume that
Vn: x,L ker A.

Now we claim that, for some 6 > 0
lAx, |l = 6llx,lI (6.1)

We take A := Al (ker a)L» then A is a bijective (ker A) — im A and because im 4 is closed,
A~!is continuous by the open mapping theorem. Thus

llxIl = |A~'Ax|| < C||Ax|| = C||Ax||VxLker A (6.2)

“&” (x,) C ker A, ||x,|| <1 then (Ax,) = (0) is convergent thus (x,) has a convergent subse-
quence = B(ker A) is compact = dimker A < co.

So let (x,)Lker A s.t. y, = Ax, = y. If we show that [|Ax,|| > 6]|x,|| for some 6 > O,
then we are done. Assume not, i.e. ||Ax,| < %||xn||, lIx,|| = 1 then Ax, — 0 and wlog
x, > x = ||x|| =1 = Ax, - Ax = 0. This is impossible since xL ker A.

7. Definition: “Compact Operator”
If the image of the unit sphere in H| under A € #(H,, H,) has compact closure in H,, we
call A a compact operator. That means we require the image of every bounded sequence in H,
under A to contain a Cauchy subsequence. (This property automatically implies boundedness.)
The space of all compact operators is denoted by K(H, H,).

8. Lemma: Properties of Fredholm Operators
Let A € #(H,, H,) then:

1. A* € H(H,,H,)
2. There is an orthogonal decomposition

H, =ker A®imA”", H, =ker A*®imA 8.1
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3. Thereis Ry € L(H,, H,) such that
idy, —RyA = P 4 € K(H))and 8.2)
idy, —AR) = P 4+ € K(H,). (8.3)

This implies FREDHOLM’s Theorem:

4. We also have:

ind A = dimker A*A — dimker AA* = —ind A* (8.5)

9. Definition: “Finite Rank Operator”
We define the finite rank operators by

ZLu(H\,Hy)={ A€ L H|, Hy | dimimA < o } ©.1)

10. Remark:

e The space of compact operators K'(H, H,), contains the norm closure of the space &Z,(H,, H;).
As we are only concerned with Hilbert spaces, it is even equal to that norm closure. This
claim does not hold for general Banach spaces. Compare [Wer05, I1.3.5].

o Z;(H)and K(H) are two-sided *-ideals in Z(H).

11. Lemma:

Let dim H = oo and J C £(H) be a two-sided ideal. If J contains a non-compact operator,
then J = L(H).

Proof (11) Hint: You need the polar decomposition, A = U|A|, |A| = \/A*A for A € C(H)
and also the spectral theorem (see e.g. [Dav95, Chapter 2] and [RS80, Theorem VII.8]):

A= A" € C(H) © 3IE 4(A)) ;g orth.proj., increasing :

slim E,() =0, slim E,()=id,  E() = s-lim E,(D) (1D
S.t.
+o0
x €domA & / A E (D)x|* < oo (11.2)
+o0 ®
axo = [ i) (113)

In particular E 4 (A1)A = AE 4(A).
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12. Theorem: Spectrum of Compact Operators

Let A € K(H) with dim H = oo, then
1. spec A = (Aj)j"l U {0} where 4; # 0, [4;| < |4;4,] (counted with multiplicity).

2. For each 4 € spec A~ {0} there is a projection P; € Zf,(H) & dim P; < oo s.t.

spec P;A = spec PyA = {1} (12.1)
= P,A = AP, + D, with D, nilpotent (12.2)
For A # A" € spec A, P,P;, =0 and

_ el
P=—5- |¢|=e(A olde (12.3)

3. [[All =14

13. Remark: Trivial Spectrum

It may happen that spec A = {0}, even though A is not of finite rank. Take for example in
L?[0, 1] the Volterra operator

t
Ax(t) = / x(s)ds (13.1)
0
14. Theorem: Property of Compact Operators
1. K£(H) is a two-sided norm-closed ideal.
2. A€ K(H) > A* € K(H)i.e. K(H) is a *-ideal.

3. AH)/K(H) is a unital Banach-*-algebra called the Calkin-algebra. Let z be the corre-
sponding injection from L(H). Then T € LA(H) is in F(H) iff z(T) is invertible in the
Calkin-algebra. The index characterizes the connected components of invertible elements
in Z/IK.

= inf ||[T+K 14.1
l7z(DIl g5 Kel%(H)” + Kl #m (14.1)

15. Theorem: FREDHOLM
If K € K(H) then id +K € #(H) with indid+K) =0

16. Example: Possible Values for the Fredholm Index
Look at the Hilbert space

*(C) = { x:Z, - C

lIx[13 = )" Ix; 1> < oo } (16.1)

Jj=0
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and consider the operator

0 | =

(Sx), = j=0 (16.2)

j .
xj.p J>0

It is called the unilateral shift and is Fredholm of index —1. Then S” has index —n and $™" has
index n. This means there are Fredholm operators of any integer index.

17. Theorem: ATKINSON
A € C(H,, H,) is Fredholm iff there are R € #(H,, H,) and K; € K(H;) such that

idy ~-RA=K, A idy —AR=K, (17.1)

Such an operator R is called a parametrix for A.

1.2. Traces and Determinants

For further information see for example [Kat95].

I.2.1. Finite Dimensional Spaces

To see what can be done, we first of all look at the situation of finite dimensional Hilbert spaces
H. Afterwards this approach should provide some inspiration when we concern ourselves with
the general case. For now we write N := dim H.

18. Definition: “Trace”
Solet A € Z(H), (e;) a basis and (¢') the corresponding dual basis. We will write Af =
e'(Ae ;). Then the frace of A is defined as

N
tr A= Zej(Aej)= ZAjZ (18.1)
Jj=1 J

19. Remark: Properties of the Trace
1. The trace tr: £(H) — C is linear.

2. It is invariant under permutations in Z£(H): tr AB = tr BA. That means, if [A, B] denotes
the usual commutator, ker tr O [L(H), L(H)].

20. Theorem: Vanishing Trace
For any linear operator A € £(H):

trA=0=3B,Ce L H):A=[B,C]. (20.1)
So in addition to the above property even
ker tr = [L(H), L(H)]. (20.2)

Bodo Graumann
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21. Discussion: A Better Description of the Trace
Recall that the spectrum is defined as

spec A:={ A€ C | A— Anotinvertible }, (21.1)

but can also be expressed as spec A = ;(ZI(O) where y,:C 2 A - det(A — A) € Cis the
characteristic polynomial of A. Now it is possible to decompose A as

A=) AP+ D, (21.2)
AEspec A
where
P,=P}, PPy=6,P, Y P=id (21.3)
A= L L =0, 4= 1dy .
P,D,=D,P,=D,, Vidn:D’} =0 (21.4)
in particular
P =-— (A-p7'd¢ (21.5)
270 Jie—aj=e
My, (4) := dimker(A — 1) (21.6)
mg;,(4) = dimim P; = multiplicity of 4 as a zero of y, (21.7)

22. Definition: ‘“Chern Polynomial”
Similar to y, we define the polynomial expansion

N
det(id+zA) =t ) ¢;(A)z/ (22.1)
Jj=0

and call ¢;(A) the j-th Chern polynomial. Now the sum
c(A) = cy(A) + c;(A) + ... + ¢,(A) (22.2)

is the total Chern polynomial.

23. Remark:

The c¢; are homogeneous polynomials of degree j in the eigenvalues of A and the most promi-
nent ones are

cp(A) =1, (23.1)
cj(A)=trA and (23.2)
cy(A) =det A, (23.3)

They are related to the characteristic polynomial via

det(id +zA) = z" det(A — (—l)id) = zN;(A(—l) = | | (A;z+1) (23.4)
Z Z
AEspec A

Bodo Graumann
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24. Lemma: Invariance
The Chern polynomials are invariant under the action of #*(H) ~ GL(N, C) on #(H) by
conjugation. Let T € #*(H) and A € Z(H), then

¢;(T™'AT) = ¢;(A). (24.1)
This is a generalization of Remark 19 item 2 (Properties of the Trace).

25. Problem:
Write a formula for ¢;(A) for A = (Aj.) € Mat(N, C).
Write an operator theoretic formula!

26. Lemma:
Any linear operator A € Z(H) induces a homomorphism of graded algebras A/ A € Z(A’ H)
such that

AAW| A ... AV = (Av)) A .. A (AD)). (26.1)
Then
¢;(A) =tryy AA. (26.2)

Proof (26) First of all we will denote index sets by
={IcNy|#I=}, (26.3)

so that in particular #1 ]JV =( ]{,). Then we define the diagonal minors A; € L(H) by

Ae; = j-thcolumnof A ifj€ I and
Ae; = . (26.4)
e; otherwise.
This yields
N
det(id+zA) = ) z/ ) det A, (26.5)
=0 fer
so that
c(A)= ) detA,. (26.6)

Next we have to compute tr A’ A. An orthonormal basis of A/ H is given by (e, Ao A e el -
N
So with

rAA= Y (AAe, AoAe)en A Ae) (26.7)

J
Ier,
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and
(Ae; A ... A Ae; e A A e,-j) (26.8)
_ loh) 4lo@)  4lo()
= Z ATVAL A (e N Ney e ne ) (26.9)
oES;
= D AATY AT sgno = det A (26.10)
0ES;

the proof is complete.

27. Theorem: Determinant Expansion
The determinant can be written as a polynomial:

N
det(idy; +zA) = Z Zr AA = H(l + ZA(A)) (27.1)
j=0 A

and the tr A/ A are the elementary symmetric polynomials in spec A denoted as o, 5y, ..., G,

28. Theorem:
Any p € C[zy,...,z5] which is symmetric, i.e. invariant under the action of S, can be
written as a polynomial p € Cloy, ...,on].

Hence the following polynomials can be written as polynomials in the o .

29. Definition: “Some Concrete Polynomials”

1. Adams polynomials
a;j(A)=1tr A/, j=0,...,N (29.1)
2. the Chern character
chA:=tret (29.2)
(not a polynomial)

3. the Todd polynomial

B, o
Td(A) := det ( A ) =det( Y L-1ya (29.3)
id—e=4 eed
20
4. the A-polynomial
A A

A(A) = det < )ztrlogW 294
(4) et sinh A ¢ " @9.4)

5. the L-polynomial

1 A

L(A) = det? ( ) 29.5
(4) et tanh A ( )

Bodo Graumann
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30. Theorem:

Denote by P, (Z(CN)) the Sy-invariant polynomials with values in C; they form a ring.
Then

P, (LCN) =Cl[l,cq,....cx] (30.1)

i.e. any of these polynomials can be written as a polynomial in the Chern polynomials.

1.2.2. Infinite Dimensional Spaces

Extension to infinite dimension The only similarity in infinite dimensions is, that compact op-
erators K have a spectrum spec K = {4, € C~{0}}U{0} where |4,| > |4, | with multiplicities
(Mgeo(A) and my, (1)) and lim,,_,  |4,| = 0. Butnow 3’ 1, does not necessarily converge! In the
(infinite dimensional) compact case we can also do the resolvent analysis as in Discussion 21 (A
Better Description of the Trace), but now D, is only quasi-nilpotent, i.e.

(o =0 (I-1)

31. Definition: “Hilbert-Schmidt Operator”
A € #(H,, H,) is called Hilbert-Schmidt (HS) iff

Y llAej|> < 0o forany onb (e;) of H. (31.1)
J

32. Lemma:
1. The HS-operators form a C-vector space in KX(H |, H,), called X,(H,, H,).

2. ||A||§ = ) j [|Ae j||2 does not depend on the choice of the orthonormal basis (e;) and
defines a norm on XC,(H,, H,).

3. For K € Ky(H,, H,) and A € #(H,, H,), also K* € K,(H,) and
AK € Ky(Hy) and  [JAK|l; < [[A]l 1Kl (32.1)
similar for KA, i.e. K, is a left and right module over respective bounded operators.

4. For A, B € K,(H) we can define a scalar product
(]
(A, B), = Z (Ae;, Be;) for any onb (e;) (32.2)
j=1

s.t. [(A, B),| < ||AllL|IBll, (32.3)

5. If A= A" € K,(H) then
Al3 =) 22 (32.4)

A€spec A

Bodo Graumann
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Proof (32) Let (e 1), (fi) be orthonormal bases of H, A € K,(H). Then
D llAe, P = D1 KAy, f)l> = D Iej A f) 1P = D IIA* £, 12 (32.5)
k

JjeN k,jeN J.k

33. Theorem: Line Bundles

Let (M, g™) be a closed oriented Riemannian manifold and (E, hf) - M a Hermitian line
bundle. Let moreover k € LZ(M X M, Z(E H E)) then the operator

Ks(p) = / k(p, 9){s(q)} volp (q) (33.1)
M
is a HS operator in Z(L2(M , E)) with

2 2 2
WK = 2 prept. o) =/MXM 1o, DI £, ) VOLuaxrs (- 9D (33.2)

Now back to the general case H = H + @ H~ with involution « = . Wen want to find
operators with finite trace. If (e;) y is an orthonormal basis, then we should have

34. Definition: “Operators with Trace”
A has a trace iff

Z (Ae;,e;) is finite (34.1)

jeN

and independent of the choice of (e i) jen-

35. Definition: “Trace Class”
The set of linear operators

L
Ki(H) = { A€ LH)|A= Y B,Cwith B, C, € Ky() | (35.1)
=1
is called the trace class of H.

36. Theorem:
1. Let A € K(H) and (e;) an orthonormal basis of H then

D [{Aej,e)] < co. (36.1)
J
2. If A= A" € K(H) is compact then A € K(H) if and only if

1Al = )} 14l < . (36.2)
A€spec A
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37. Theorem:
1. K,(H) is a norm-closed two-sided *-ideal in Z(H).

2. We define the trace on K[(H) by
L L «
tr<2 BjAj> =)' Y (Ajer. Bley) (37.1)
j=1 j=1 k=1
This is well-defined.

The trace is a (continuous) linear functional with

trA*=trA, trAB=tr BA for A € K\(H), B € Z(H) (37.2)

3. If K = K* € K,(H) with eigenvalues (/lj(K)), then

r K=Y 4,(K) (37.3)
j=1

Remark For K # K™ this is still true, but not at all obvious. (e.g. look again at the
Volterra operator). It was proved by LIDSKII in 1959.

Problem Work out the trace on K (LZ(M , F)) in the situation of Theorem 33 (Line Bundles).
Next Point: Show how to extent determinants to co dimensions, needs ||-|| K, (H)-

Write A = U|A| and define
lAllic, &y = tr] Al (I-2)

The good aspect of the result Theorem 27 (Determinant Expansion) is that it generalizes as it
stands to infinite dimensions:

38. Theorem:
If A € K[(H) then

det(Iy +zA) = ) 2 r A*A =[]0 +z4;(4)) (38.1)

k>0 A

Main Example M closed (oriented) manifold, EY, E- — M smooth C-vector bundles, D: C*(M, E*) —
C®(M, E™) linear elliptic differential operator. Then we put metrics g'™ on TM and hE™ on
E* to get Hilbert spaces L?(M, E*) with scalar product

(51:52) g pey = / hE (5,(p). 55(p)) vol y (p) (1-3)
M

D is a closed' unbounded Fredholm operator H, = L*(M,E*) > H, := L*(M, E).

Iclosed always means densely defined

Bodo Graumann
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39. Discussion: Reduction to Bounded Operators
Instead of looking at an unbounded operators A € C(H,, H,), we can regard the graph of A
as a Hilbert space, because A is closed. There 7, corresponds to A.

H, H, H & H, (39.1)
= N
dom A ~ Hl = grA HZ =: ﬂz
Te /zkﬂeﬂﬁl,ﬁg
(s, As)

Note that the identification of dom A and gr A induces the graph norm on dom A, which in general
gives a finer topology than that induced from ||-|| 5, -

40. Discussion: Polar Decomposition
Let A € #(H,, H,) and define

|A] = (A*A): € LA(H,) modulus of A (40.1)

|A| is self-adjoint and positive (i.e. Vx € H;: (Ax, x) > 0).

41. Theorem:
There is an operator U € #A(H,, H,) s.t.

A=U|A| (41.1)

Here UU* is the orthogonal projection in H, onto im A = (ker A*)* and U*U is the orthogonal

projection in H, onto im A* = (ker A)*.
Proof (41) Note first that ker A = ker|A| since
ALxI?, = (Alx. [Alx), = (A%, x)p, = (A*Ax,x)p, = | Ax[1%, 41.2)
Then the map U:im|A| 2 |A|x — Ax € im A is a well-defined isometry and satisfies
Vx,y € im|A|: (Ux,Uy) g, = (x,¥) g, = (x, U Uy)py, (41.3)
= U*U| I;

imA] = fim|A] (41.4)

U extends toim|A| — im A by continuity. Put Ulml = Ulyerja) = 0. U is a partial isometry.
42. Corollary: Generalized Inverse

If Ae #H,, H,y), then 36 > 0: || |A|x|| = ||Ax|| > &||x|VxLker A.
Hence |A| (and A) admits a generalized inverse |A|™' € F(H D)

if x = |A|y, xLker|A
mwx={y if x = | Aly, xLker|A| w

0 if x € ker|A]|
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Let A € #(H,, H,) and write A = U|A]| to get the parametrix R = |A|~'U* then

AR=UU" = P— (I-4)
Iy, = Bog = Pimay € Ky(Hy) (I-5)
try, (I, — AR) = dim coker A {1-6)
RA=U"U = Py ay {I-7)
Iy, = Pyer ayt = Prer 4 € Ky(HY) 1-8)
try, (I, — RA) = dimker A 1-9)

43. Theorem: Good Parametrices
A € X(H,, H,) is Fredholm iff there is R € Z(H,, H|) s.t.

Iy, — RA € K\(H))
Iy, — AR € K\(Hy)
indA =try; (Iy — RA) = try (I, — AR) (43.1)

If Equation 43.1 holds, then R is called a good parametrix. In fact any parametrix, which satisfies
the first two relations is already good. To prove this we have to use the following:

44. Lemma:
Let A€ £(H,, H,), Be ¥£(H,, H,) such that AB, BA are of trace class, then

This follows for example with 3.
Consider a closed operator D € #,,(H, H,),i.e. D may not extend to Z(H,, H,)

45. Definition: “Discrete Operator”
D is called discrete iff j:dom D < H,; is compact.

46. Lemma:
If D is self-adjoint then spec D is discrete, i.e. consists only of isolated eigenvalues of finite
multiplicity, iff D is discrete in the sense of the former definition.

47. Theorem: MCKEAN-SINGER
2
Assume that D = D™ is discrete in H and for ¢ > 0, ¢'?* with eigenvalues (™) 4 Espec D* If
in addition D anti-commutes with an involution a, i.e.
a(domD)=domD A aD+ Da=0 47.1)
Then H = H* @ H~, dom D = (dom D)* @ (dom D)~ =: (dom D*) @ (dom D~) and D =
(2. Also D* is a Fredholm operator in %, (H*, H™) with adjoint D~ and

. —tD? —tD~ —tD*D~
ind D* = tr y(ae™P") = tr . 7P bt —try-e DD 47.2)

Bodo Graumann
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Explanation
b =d"+¢T  ad,=¢ 7 47.3)
try(ae™®) = 3 (@) = ) e ady )
o ’ (47.4)
=Y eI - s 1)
J
4 iy ae™ = —try(@D? ™) = —tr y(DaDe?’) = 0 (47.5)

dt
48. Problem:
D*D™ and D™ D™ have the same non-zero eigenvalues
1.3. Properties of the Fredholm Index

Let A € #,,(H,, H,) for any Hilbert spaces H;, H,. And let R € Z(H,, H;) be a good
parametrix, i.e.

Iy — RA € K\(H)) (1-10)
Iy, — AR € K\(H,) (1-11)
indA =try; (Iy — RA) = try (I, — AR) (1-12)

49. Theorem: Properties of the Index
1. stability, i.e. not disturbed by small perturbations:

If B€ #(H,, H,) s.t.
BRIy, <1, |IRBlly <1 (49.1)
then

A-Be Z,,(H,, Hy) with ind(A— B)=ind A (49.2)

2. Logarithmic law

H3 A ngd(H_l,H),]=2,3,
R, %, ! e (49.3)

(R; € Q(Hj, H;_ ) good parametrices of Aj)Jj=1, 2
then

A,A, € F(H,, H;) with indA,A, =indA, +ind A, (49.4)
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Proof (49)

1. Test case: A is invertible, R = A™!, then A — B is as good as A if it is invertible:

(A-B)' =AUy -A"'B) ' =y - RB)'R (49.5)
Ay

=) (RBYR=R) (BR) =R, (49.6)
Jz0 J=0

Try now R; as a (good) parametrix for A, in general.

Iy —RA =1y - (RBYR(A-B)=1I, - ) (RBYRA- ) (RBY"!

J=20 j=20 Jj=0
(49.7)
=TIy —RA-) (RBY"'RA+ ) (RBY* (49.8)
Jj=0 j=0
— j+1 _ ;
= <Z (RBY*!' + 1) (I, — RA) = 2 (RBY (I — RA) (49.9)
Jjz0 Jj=0
Compute also
Iy, — AR, = (Iy, — AR) )’ (BRY (49.10)
Jj=0
trHl (I}I1 - RlAl) - ter(IHz - AlRl)
=ind A +try Y .(RBY(Iy — RA)—try Y (Iy, — AR)(BRY 49.11)
j>1 izl
=0

2. Set A :== A, A, then A is Fredholm (think of Lemma 6 (Semi-Fredholm Condition)) and
we expect R R, =: R to be a good parametrix.

Compute

(49.12)
=y, — RiA) + R (Iy, — RyAyA,
= try (I, — RA) =try (I, — RyA) +tryy (I, — RyA)A R,
=try (Iy, — RjA) +try (I, — RyAy) (49.13)
—try (I, — RyA)(I g, — A(R))
= indA;A, =ind A, +ind A, (49.14)
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50. Definition: “Operator Product”
Let A/ € F(H, Hé) for j = 1,2. Then we can construct the Hilbert space tensor product
H 11 QH 12 by taking the completion of the algebraic tensor product

N
{ Z x,lc ® xi
k=1
under the pre-Hilbert structure defined by

QO x,®x3, ) X @x7) = ) (x, x] Mg, x7) (50.2)
k 1

k.l

x}(eHll,xieHz,NeN} (50.1)

Then we define the following maps:

AI®IH12
H| ® H? H)® H? (50.3)
@ ®
H) ® H? H! ® H?
Al’*®1H§

A (Al @Iz —Iy ®A>

1 2 1 2 1 2 1 2
Iy ® A Al,*@,IH)ean(H1 ®H ®H)®HLH)®@ H® H ® HY)

(50.4)
AV Q@I I @AY | @ H? | @ H?
—IH21®A A ®IH22 H, ® H, H, ® H,
Next we compute:
AVA @ I @ Iy @ A A° 0
A*A = © H‘ZGB H‘l® 2 2. 141 (50.6)
0 IH21®AA’€BAA’®IH22

We want to show that this operator is again Fredholm. So what is the kernel of Al Al Q1 H? (2]
Iy @ A**A%?
In the end we get A is Fredholm with ind A = ind A" ind A%.
I.4. Pseudodifferential Operators (\ydo)
1.4.1. Euclidean Case
For simplicity look at the model space ¥DO(R"™, C*).
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Recall the Schwartz space
S(R™, CK) = { s € C®(R™, Ch ’ (1 + [x])E DYs(x)] < C, ;¥x € R” } (-13)
Then we have the Fourier transform
FS3sH 2n)2 / e XD s(x)dx = §(&) e S (1-14)
and
Dis() = £%3(5) (1-15)
x75(8) = DE3(E) (1-16)
(Sl,Sz)LZ = (§1,§2)L2 (1-17)
Fls() = Q)% / e D5()de = (Fs)(—x) (I-18)
P(x, D)s(x) = ) A, (x)D%s(x)
la<t
= Q)2 / (6 2 A (x)E¥5(E) dé € Diff (R™, CK) I-19)
" | <!
—— —
P(x,6)
Standard Assumption (controls growth at infinity)
I
|DEDEP(x, §)] < C, (1 + €271 (1-20)
Now we get a calculus:
Diff (R™, C¥) is an algebra under concatenation and also a *-algebra, i.e.
(P(x, D)sy, 57)12 = (51, P(x, D) 5,);2 with P(x, D)" € Diff(R", C*) (I-21)
Here P' € Diff, & P € Diff, and we take the L? scalar product induced by
sl 2 @m ey = / |S(x)|ékd>€, s € S(R™,C*) (I-22)
Rm
Principal Symbol
N
Prrine(x0 )(2) 5= 5 P )(x0). (1-23)
where ¢ € C®(R™), (x,y) = 0,dp(x,y) = & and s € CX(R™, C*) with s(x,) = z (I-24)
= ﬁprinc(XO’ 50) = Z Aa(x)ga (I-25)

|a|=I1
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Now without requiring ¢(x,) = 0, choose ¢(x) = (x, &,) and set ¢ := (Zn)_%:

Pine(x0. &)z = lim 17110 P, D)(e"?s)(x)

~ lim ¢ / 0 =it 0) =1 P, £)(ePs)(E)de

—>o0

= lim ¢ / e X010 =1 P(x, £)§(E — itéy)dE (1-26)

—>o0

=0

= lim e~ "0 %) ¢ / e oM P(xy, n + 1£,)8(r)dn

c / NP (x EDSdn = P, (x0.£0)s(x0)

We did not use that P(x, &) is a polynomial, but only that

L2

Tim £~ Pxg, 1+ 10) —— Pxg. &) 1-27)

51. Definition: “Symbol Space”
We define the symbol space of order | € R, Sym,(R™, C¥), as the space of all p € C®(R™ x
R™, Q(Ck)) such that Equation I-20 (Standard Assumption) holds.

52. Lemma:
Let p € Sym,(R", C*) and define

P(x, D)s(x) = 27) 7 / "9 p(x, £)3(&)de (52.1)
Then P defines an element of (&, &).

53. Example: Crucial

We write
(& =1+ €))7 € C®R™) (53.1)
(&) =1+ &2 € C®R™) (53.2)

Then even (£)* € Sym (R™, C¥) for all s € R.
Au(x) = 2r)7 7 / N E wEdE  ue S L? (53.3)

m

Here A is closable in L*(R™, C*) and essentially self-adjoint.
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54. Definition: “Classic Pseudodifferential Operator”
We define the space of classic pseudodifferential operators of order | as

¥DO,(R™,C*) := { Px, D) | P € Sym,(R",C") } (54.1)

Now we define naturally ¥DO := U, ¥DO, but while N, Diff, = C*(R", L(CF)) now
YDO_, = N;er'PDO,; is a big space of non-trivial operators!

So what is the principal symbol of A,? Following the previous recipe we have to compute the
L?-limit of

lim ¢ H) = lim 17 (1 + | + 15, |%)*? (1-28)
. r . 1 2 r
= lim 1771+ 0l + 21817 = 260 &o))F = Tim (18] + = = Z(1. &) (1-29)

We may assume |#| < R than the elements are bounded between %|§o| and 2|&,| if t > #(R) and
thus the limit is |&,|".

55. Definition: ‘“Formal Expansion”
For p € Sym;(R", C*) a formal expansion (or formal development) is a formal series p ; €
Symnj(R’”, C*) such that n; - —oo andif p— Z;=1 p; € Symsj([R{"', C*) then s; = —oo too. We
write:

PO, ~ Y p(x.9) (55.1)
=1

Additional Requirement If p € Sym,;(R", Ch), |&| >> 0, there shall exist a formal expansion

PO~ Y py(x. 9 (1-30)

JEZ,

such that p — Z;zl p; € Sym,_j(Rm, C*) and pj is positive homogeneous in & of degree / — j + 1.
Then of course p,, = p;.

Example For |&] > 2

a+igty i =i (144 =l 3 () (—L>k 131)
B AN

k>0

DI~

Fact: Formal expansions induce operator expansions modulo YDO__ (R", chy.
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56. Theorem:
1. YDO(R™, C¥) is an algebra, s.t.

(PP, =P ,.P,, (56.1)
2. PEYDO = P' € ¥DO
3. The map P+— Ppr is surjective and P, = pZ,pr = P - P, e¥YDO,_,.

1.4.2. Regularity Theory

57. Definition: “SOBOLEV Space”
We write

dom A,

: HS(R™,C*) =t Sobolev space of order s

(57.1)
{wR" - C* | (@ la@)] € LAR",CH }

58. Lemma:

The scalar product (s, s,) for s;,s, € & extends by continuity to a non-degenerate bilinear
form

(s1.5)  HS X H > C (58.1)

i.e. it gives an isomorphism H ~° ~ H*>*,
H' is also a Hilbert space itself with

IslI? = 2n)~2 : (&)"15()|dé (58.2)

59. Theorem:
If Pe ¥YDO,, then P extends by continuity to an element of Z(H"(R", ch, H 1 (R™, C*)).

(H"(R™,C*),cg) is called the Sobolev chain of R™ x C* (associated to A).

60. Theorem: SOBOLEV Imbedding
H'R",CY cC'R",CHifI>n+12.

61. Theorem: L’-boundedness
Let P e WYDO,, then P extends to an element of Sf(LZ([Rm, ckyiff1 <0.

62. Theorem: RELLICH

If P € YDO, defined by P satisfies that 7y supp P(x, &) is compact in R™ and / < 0, then P is
compact.
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63. Lemma:
P e ¥YDO_ is given by a smooth kernel K, i.e.

Ps(x) = / K, (x, y){s(y)}dy (63.1)

with all derivatives of K » bounded.

For a differential operator we had locality i.e. supp Ps C supp s. But this is not true anymore
for pseudodifferential operators.

1.4.3. Manifold Case

Fix M™ a closed oriented manifold of dimension m and on it a Riemannian metric g™ . Choose
also smooth C-vector bundles E ;= M,j=1,2ofrank k ; with Hermitian metrics 2% . So then

we get the Hilbert spaces H; = L*(M, E;), ie. fors; € C(M, E;) we have

510 = /M Is,PIE, voluyp) (132)
M E; E, D E, (1-33)
= N
s M
U r j|U
ix &
3
R™ U xChi

Now we have differential operators D: C*(M, E;) — C*(M, E,) in local frames ¢ and coordi-
nates x:

;' Ds = (67! Doy)s,, = 2 A,Dis, where A € C®(U, Z(Ch, Chy) (1-34)
lal<I
. 0 a ) a,
Dy ==i——, Df=D..Dy (1-35)

Recall the principal symbol: for ¢ € R™ we replace D§ by £ for |a| = I to get
Z A,E"  homogeneous polynomial in & 1-36)

la|=I

(SEELEY) Fix ¢ € TP*M, choose ¢ € C¥(M), s.t. ¢(p) = 0, dp(p) = £ and choose e € E; ,
59 € C®(M, E,) s.t. sy(p) = e. Then we have D: C*(TM, L(x*(E,), n*(E,))) for : TM — M
and

bl
D©{e} = ;—,D(qb’so)(p) (1-37)
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Alternatively we can write

= lim (t7'e7"P) D(e"?5,)(p)) (I-38)

t—00

We call D elliptic iff D(¢) is invertible for & # 0, i.e. D(&) is invertible on T*M ~ {0}. So to
construct a parametrix we would want to form D@ ine+0.

Pseudodifferential operators are linear operators A with domain C*(M, E;)) and image in
C®(M, E,). Each pseudodifferential operator has a symbol A and the symbol map Sym: A — A
maps WDO into the symbol space

C®(T*M~ {0}, Ax*E,, n* E,) positive homogeneous of degree / for / € R ). (I-39)
Then we propose the following axioms:

The symbol map is surjective and if A; = A, of order I then A, — A, is of order at most
-1
For A] S TDOII(EO’ El ), A2 (S TDOIZ(EI’ E2) we have A/2\141 == AAIAAZ
A € ¥YDO,(E,, E,) extends to Z(H,, H,) if | < 0, to X(H,, H,) if I < 0 and even to
A € ¥DO,(E,, E,) implies A* € YDO,(E,, E,)
Now choose an operator A,,t € R, positive definite, i.e. (A;s, s) > 0 and equal to zero only if

s =0. A, € YDO,(E, E) with A,(&) := (£)".

64. Definition: “Sobolev Space”
We define the Sobolev space of order ¢t for E

H'(E) :=dom A, C L*(M, E) (64.1)

Application to Elliptic Regularity (Calderén) Take D € ¥DO,, I > 0 with f)pr(x, &) in-
vertible for £ # 0. Then we want to show that s € dom D C L> Ds € C*®(M, E) implies
s€C®(M,E).

Construct Ry € YDO_ s.t. R\Opr = (]5Pr)_1 outside the zero-section. Then

RoD, = Ry, D, = I, (I-40)
> RD=1+0Q  withQ € ¥DO_(M, E,) C K(H,, H,) (I-41)
Put for any N € N:
N N
Ryyi = ). (1= RyD)*Ry = Ry ) (I - DRy)* (1-42)
k=0 k=0
= I-RyD=(I-RyD)N = 0" € ¥DO_y (M, E,) (1-43)

(analogous for DR,)
Hence for N > m, R, is of trace class and thus a good parametrix.

Bodo Graumann



I. The Analytic Index of Elliptic Operators Page 25

65. Theorem:
Let A € YDO,(M, E,, E,) be elliptic for / > 0. Then

1. A: H (M, Eg) » H°(M, E,) and ||| g1p, ) is equivalent to the graph norm of A.
2. A is a Fredholm operator, and
indAztrHl(IHl — RyA) —try, (Iy, — ARy) (65.1)
if N> m.

3. Elliptic regularity: If s € H'(M, Ey) and As € H"(M, E,), then s € H*(M, E,)) where
k =max{/l,l +r}.

4. AT: H((M,E,) » H(M, E,) is actually equal to A*,
Proof (65)
1. Is already known.
2. A € #,(H,, H,) by the parametrix construction, the index formula was already proved.

3. Ifs e HI(M, E,) then Ase H® = LZ(M, E;). Now assume As € H'(M, E,) for some
r > 0. Then we apply Ry, N large

As=:s' € H'(M,E,) = RyAs = Rys' € H"*/(M, E,) (65.2)
=(RyA—1Iy)s+s=s5=Rys' + Uy — RyA)s e H"""HN (M, Ej) (65.3)
oy
€HN(M,Ey)

In particular, As € C®(M, E,) = s € C®(M, E,).

I1.4.4. Elliptic Complexes

66. Definition: “Differential Complex” and “Elliptic Complex”
Let E; — M be a finite sequence of vector bundles over a manifold M. Then a sequence of
differential operators D; € Diff (M, E;, E; ) is called a differential complex. We write:

D, D, Dy,
0 E, E, E, 0 (66.1)

If the corresponding sequence of principal symbols D; € C*(T*M, X(z*E;, n* E,,)),

Dy(®) Dy(® D (®

0 E, E, E, 0 (66.2)

is exact outside the zero section, i.e. for £ € T* M ~ M, we call the differential complex elliptic.
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Main example: The de Rham complex and its symbols are

0—— M) L= 2"y —L> ... Lo (M) ——=0 (1-44)
0 AT 0 prpe g PO O e gy 0 (1-45)

Now for & # 0 we have ker w(&),, ;| = im(¢);, i.e. this sequence is exact, thus (M (M),d’) is an
elliptic complex. But notice that in general H) (M) = ker d’/imd’ # 0.
Let M be compact as always, then

di: H' (M, A'T* M) LX(M, A7 T* M) (1-46)

\ J

ker di C ker dit! ¢ HY (M, A7T'T* M)

Problem: show im dJ C ker d/+!. .
Thus we define the closed de Rham complex: (A (M), d/).

Note If €| yjqspr = (=1) I gy py then

67. Lemma:
Let A € C(H) with adjoint A* € C(H) and A% =0,ie. imA C ker A C dom A. Then

D:=A+ A* with dom D = dom A N dom A* (67.1)

dense in H is self-adjoint.

63. Theorem: HODGE Decomposition Theorem
Let H be any Hilbert space and d € C(H) with d? = 0, then:

1. There is an orthogonal decomposition (called the Kodaira-Hodge decomposition)

H = kerdnkerd® @ imd & imd*
= Hh @ Hcl @ Hccl
harmonic closed coclosed

(68.1)

2. Define the Hodge operator D := d + d*, then D is densely defined and self-adjoint.

3. If D is Fredholm then imd = imd, imd* = im d and we have the Hodge decomposition
H=H,®imd@®imd* and H, = ker D ~ ker d/imd is finite dimensional.
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Notation: ker d/imd = #(H, d) is called the homology of (H, d) and is usually a topo-
logical quantity.

4. D is Fredholm iff dimker d/imd < 0.

5. If « € L(H) is a self-adjoint involution, i.e. a”!' = a =a* and d is odd (da + ad = 0)
then if D is Fredholm we have

ind D" = dim #Z*(H,d) — dim %~ (H, d) (68.2)

Here H can also be constructed from a non-compact manifold.

Proof (68)

1. We have a decomposition

H =kerd @ (ker d)* = kerd @ imd* (68.3)
=imd @ kerdnkerd” @ imd* ~ (kerd nkerd™) ® imd & imd* (68.4)

Since D is Fredholm we know that im D = { dx +d*x | x € domd Nndomd* } is closed
and (dx, d*x) = (d’x,x) = 0.

H=%&®imd® imd* (68.5)
Cdom d*
Cker d
domd =@ imd & imd* ndomd (68.6)
dom D = # @ imd ndomd* @ imd* ndomd 3 x = x, ® x,; D X, (68.7)
=>dx+d*x =d*x,; +dx,, (68.8)

Where the indices stand for harmonic, closed and coclosed.

Ify, =lim,_ dxw,’n then also y,., = lim,,_, Dxcc,’n = Dx , =dXx,,.

2. Assume that D is Fredholm. Thenkerd = H,®H,sodomd = H,®H ,,®(H ,Nndomd)
and H,, N domd has to be dense in H,,. In the same way we get that H,, N domd” is
dense in H,;. So then domd ndomd™* = H, & (H,; ndomd*) ® (H,,; N domd) is dense
in H and D maps Hj to 0, H,; ndomd* as d* to H,,, and H,, N domd like d to H_.
Now d € C(H,,;, H,)) with adjoint d* € C(H;, H_.)).

ccl»

Example Apply this to the de Rham complex on M compact, then

d* e lefl(M’ AeU/OddT*M, Aodd/eUT*M) (1-48)
d*,d € Diff (M, H' (M, AT* M, AT* M)) (1-49)
(d+dN© = i(w(&) — (&) = ie(&) (1-50)
_C(f)z = |§|21AT*M (I-51)
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Here
H(Aa)(M), d) = ker d/imd = @ ker d//im d/~!
Jj>0
. . 1-52)
= @ %éR(M) = @ %sjing(M’ R)
J=0 j=0
This gives us the following
69. Corollary:
D* € F,(H*, H") is also Fredholm with
ind D" =dim#Z* —dim#Z~ = y(M) (69.1)

if M is orientable.

Example Consider M", a closed, oriented manifold with a Riemannian metric gTM . We in-

troduce the complex volume

m+1
Wy = i[TJr]C(el) o,...0 C(em)

1-53)

where (e;) is a loonf for TM and ¢ denotes the natural Clifford action on AT*M: c(e ) = w(e/)—

z(ej).

In physics w is called the chirality operator.

70. Lemma: Properties of ®
1' a)% = a)7 w2 = IAT*M

2. c(X)w = (D" we(X), X € TM
3. VECw =0

4. do = (=1 wd"
This implies Do + (=1)"'wD =0 and d' = (1) wdw

5. Assume m is even and express w by the Hodge star operator .

Then w splits

Aoy(M) = Aa)(m @D /1(_2)(]\4)
T (M).d) = T+ & H (ho) (M), d)

Then again

ind D* = dim#Z* —dim %~ = dimZ T —dim #Z 7~ = signature of M

=trp
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where

p(n) = / nAwn (I-58)
M

Show that ind D* =0if m € 2 + 4Z.
So an interesting signature arises only for m € 4Z. In that case the complex volume element
isw=(=1)"c(e))o ... o cle,).

71. Theorem: HIRZEBRUCH
For M closed and oriented

sigM =ind D" = / L(R*M 27i) (71.1)
M

with the L-polynomial as defined in Definition 29 (Some Concrete Polynomials)
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II. The Topological Index

II.1. Characteristic Classes

The important insight here is that characteristic classes (short cc) depend only on the vector
bundle.

Recall: We have vector bundles E, E,,, E, over amanifold M and differential forms with values
in a vector bundle:

MM, E) = C®(M,E® AT*M) (II-1)
WM, E)30= ) oul =olu}, v eIrU), (11-2)

J

where ¢ ; is a frame of E over U.

In this way we can take /IO(M, HE)) = C®(M, Z(E)) which gives a matrix of C*(U) ele-
ments for any section A over U and we can calculate

o Ao Al = (o A); (I1-3)
(0 A-u) = o,(ALu") = (o, ADu* (11-4)
o' =04, o' {u'})=clu}=cA{u'} o A =usu =A"u (II-5)

where we use the Einstein summation convention. Then for forms A € A*(M, L(E)):

= Al € 2(U) 11-6)
= oA AU =0, AL AUk I1-7)
A, B € (M, L(E)) (I1-8)
(AABY, = AL A B/ (11-9)

Now for E ungraded and A € AP(M, Z(E)) and B € A9(M, Z(E)) the supercommutator is
[A,Bly,=AAB-(-1)""BAA (I1-10)
If we change frames by ¢’ = o F we get
c'A'u =cAusu' = Fu,A' = F'AF (I1-11)
Now take a connection V on A(M, E), i.e. for s € A(M, E),w € AP(M):

V(sw) = (Vs)w + s(=1)*ldw (II-12)
Vo, =0, I} € AU, E) (II-13)

where (o;) is again a frame. Now with o{u} € C*(U, E)

Vo{u} = V(o) = (Vo' + o,du’ (II-14)
= o I + opdu’ = o{d{u} + I'{u}} (II-15)
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Then for a change of frame ¢’ = o F we get the formula
I'=F'TF+ F'dF (11-16)
Take A, B € A(M, #(E)), then
VAAB)=VAAB+(-D)AAVB (I1-17)
and for A € A(M, L(E)) and u € A(M, E) we get
V(A -u) = (VAu— (-1)AA - Vu (I1-18)
Show that Equation II-18 translates locally to
{VA} =d{A} + I {A}]; (11-19)
72. Definition: “Trace of Forms”
For A € A(M, Z(E)) we define the trace as
tr A=) Al € (M) (72.1)
J
Then tr A is well defined and
dtrA=trVA (72.2)
for any connection V on E.
Curvature = V? € 12(M, X(E))
For u € A(M, E) we get
VZu = V(Vu) = o{d{Vu} + I'{Vu}} = o{d{d{u} + I'{u}} + I'{d{u} + [{u}}} (11-20)
=o{d[{u})+ T'nd{u} + TAT'{u}} = o{dl{u} + I'A I'{u}} (I1-21)
= {V?} =dF+F/\F=dF+%[F,FJ (11-22)
(VI =drf+ i a1 (I1-23)
So again for A € A(M, L(E)) we get
(V2A) = [{V?}. {A)]; (11-24)
73. Theorem: BIANCHI Identity
The curvature tensor is constant:
V(VH) =0 (73.1)
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Proof (73)
V3u = V(VZu) = (V(V))u + V3(Vu) (73.2)
= V%(Vu) (73.3)
= V(V) =0 (73.4)

Variation of Connections and Curvature Take two connections V°, V! on E, then
Vi=(1-0)V0+1V 1 e10,1] (I1-25)
is a connection and
V- V0 = ¢V = VO 24! = 10 = 10! € A\(M, H(E)) (I1-26)

because ©! transforms nicely under a change of frame (compare Equation II-16). So then

4y oyt = g0 (11-27)
dt

%V"Z = (V'V)y = VIV + VIV = %1V + vI@¥! (I1-28)
= V2 = 0% A Viu+ V(0% ) (I1-29)

=0 AVU+ (V'O Au+ (=DOY A VU= (V'O") Au (II-30)

Now we introduce

Q=—y2 (I1-31)
27i

74. Definition: “Adams Form’ and ‘“Chern Form”

We define the Adams forms as
v, =t Qe (M), kez, (74.1)
and the Chern forms as

det(I - AQ2)= )" Me;, ¢, € X (M) (74.2)

Jj>0
We should denote the dependencies by writing y, (E, vE).

Assume M™ is a closed and oriented manifold. Then the following questions arise:

2. Do y; and c; depend on V?
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75. Lemma:
The Adams forms are closed.

Proof (75) Note that A°° commutes with any form. Then

72 ! 73
dy, = dtr Q° = r(VQR5) = tr(ka_IV(VZ)(—%)) =0 (75.1)
Tl

76. Corollary:
Since any ¢, is a linear combination of some y, all ¢, are closed.

Proof (76) Show this by using NEWTON'’s identities.

77. Corollary:
Let f be holomorphic in a neighbourhood of 0, then f(£2) is closed.

78. Theorem:
Any f(£2) is independent of the choice of V, modulo d-boundaries.

fec{{z}}, Q= —%mv“ € 12(M, L(E)) (I1-32)
E—> M,VE (I11-33)
= [L(E) = up{ @)=Y [;2) =) [, wi(E) € (M) (I1-34)
j=0 Jj=0 M’D
Then
f+(E), f.(E) = det f(2) € A*(M) (I1-35)

are closed and their de Rham class, which we then call characteristic class, does not depend on
the choice of VE.

79. Lemma: Functorial Properties of Characteristic Classes
We have f(E) = f,,(E) € H x(M). Now ¢ € C®(M, N) induces a homomorphism ¢* =
H7(N) — H 5 (M) of commutative rings. Then

R
1. $*(f(E)) = f($*E)
2. f(E*) = f(E) where f(z) = f(~z)
3. fL(Ey® E)) = fL(Ep) + fL(E))

4. f(Ey® Ey) = f.(Ep) A f(E))

As in Definition 29 (Some Concrete Polynomials) we have
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80. Theorem: Most Frequent Characteristic Classes
1. wk(E) = tr QX are the Adams classes (mostly technical)

2. ¢ (E) are the Chern classes (from det(I — A£2))

() = Y, ci(E) (80.1)

20

3. ch E = tr e® the Chern character

. .
4. A(E)=det (£25)? the A-genus

5. Td(E) = det ( £ ) the Todd class (after TODD)

I—e=2

Use in Topology If E is trivial then all characteristic forms are zero and they are equal for
isomorphic bundles.

81. Lemma: Properties of the Chern Character
Let Ey, E| be vector bundles over M, then we have

Additivity: ch(Ey @ E;) = ch(E,) + ch(E))
Multiplicity: ch(E, ® E;) = ch(E,) A ch(E))

Proof (81) of the multiplicity:
Take connections V°, V! on E,, E,. Then there is a connection VE®£1 on E, ® E; manufac-
tured from

VE®E (50 ® 51) = (VE0s)) ® 51 + 50 ® (VELs)) (81.1)

Compute I” locally:

oo ® o1 [{VH®F1u} = d{u} + I'A {u) (81.2)
= VE®EDZ — gry AT (81.3)

=VE2lQ I +1,® VE? (81.4)
ch(Ey ® Ep) = tre¥ ®N+I8V' = r(oV @ el®V') =t oV try oV (81.5)

82. Theorem:
Take a vector bundle E — M™, m € 2Z, with connection V¥ and form (A*E), with the
natural even/odd grading. Then

ch AE* — ch A’ E* = ¢, (E)(Td)™' (M) (82.1)
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Remark on Real Vector Bundles Formally we can repeat what we did before, but f needs to
be real. Then we have again

det(I = AVE?) = 3 J5(E) (11-36)

j20
The relation f(E*) = f(E) with f(z) = —z.

= f(E)= f(E) & fy,, =0Vj € Z, (11-37)
= ¢y (E) = 0V) (I1-38)

83. Definition: ‘“Pontrjagin Form”
If E is real, then we define

pi(E) = cy;(E) € Hjh(M) 83.1)

as the j-th Pontrjagin form
Let E - M™, m € 27 be real and oriented. Choose a metric gE , a metric connection VF and
a loonf (e ), then VE2 s skew-symmetric.

Now we have a fibre V' = E, as an Euclidean vector space and thereon the skew-symmetric
operators denoted by A € Z, (V). Then there is an isomorphism

L3 A Y (Aeje)e Ak € AX(V) (11-39)

Jj<k

and the other way around
_ ; B
Ao ol / g (11-40)
Here we call
B
/ en = Pf(-A) € ATV (II-41)

the Euler form of E and under a change of orientation we have
Pf(Eor) = - Pf(E—or) (II_42)

Thus the following is independent of the orientation:

/ Pf(E) = y(E) (11-43)
M

Interesting Fact: Pf (A)? = det(A)
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I1.2. Some Elements of K-Theory

“K-Theory is the linear algebra
of manifolds.”
For a reference see the classic book [Ati94].

Take a locally compact Hausdorff space X. Then we define Vect(X) to be the isomorphism
classes of continuous C-vector bundles on X. If X is just one point, X = %, we have Vect(x) =
Z, C Z. In general Vect(X) is a commutative semiring for every X. To get nicer objects we
use the

Grothendieck Construction Let S be an abelian semi-group with 0. Then we want an abelian
group K(.5) admitting a semigroup homomorphism a: .S — K(S) and satisfying the following
universal property for any other group .S” and any semigroup homomorphism f:

K(S)

84. Definition: “GROTHENDIECK Group”

Let S be any semigroup. Take F(S) as the free abelian group generated by .S, F(S) ~ Z5,
with group homomorphism .S 3 s — (s) € F(S). Then we take E(S) as the subgroup of F(.5)
generated by ((s; + s,) — (57) — (5,)) and put the Grothendieck group as K(S) := F(S)/E(S).

We also introduce another construction. Let AS := { (s,s) | s € S } and define

H(S) = SXS /45 (84.1)

where .S X .S carries the usual product group structure.

85. Theorem: Properties of the Grothendieck Group
For a semigroup S and the above constructions we get:

1. Z(S) is abelian and satisfies the universal property with the natural group homomorphism
S — F(S) in the form a(s) = (s,0) + AS. So then FZ(S) ~ K(S). We will thus only write
K(S) denoting any isomorphic group that satisfies said universal property.

2. Any element of K(S) takes the form a(s;) — a(s,), s;, 5, € S.
3. ais injective iff .S has the cancellation property:
S]+HS=8+5s=>85 =35 (85.1)

forall s, sy,s, € S.
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4. If S carries a semi-ring structure, it induces one on K(.S).

5. Vect(X) does not have the cancellation property.
Eilenberg-Steenrod Axioms The Eilenberg-Steenrod axioms describe properties that a rea-
sonable homology theory should satisfy. First of all there has to be a functor which assigns
each pair of topological spaces (X, A) with A C X a Z-graded abelian group H(X,A) =
(H q(X , A))qez, called the homology groups. Here we write (X, @) =: X. Also for each con-
tinuous map f:(X,A) — (¥, B),ie. f: X — Y and f|,: A — B, there is an induced group

homomorphism f,: H(X, A) — H(Y, B) which respects the grading. Given the natural injec-
tions i: A — X and j: X — (X, A) we get a short sequence:

H(A) —" H(X) —> H(X, A) (I1-44)

Then there is connecting boundary operator d: H, (X, A) = H,_;(A) (compare also the snake
lemma).
Now the axioms are the following:

f=idix 4 = [, =idpx 4
The functor is covariant: (gf), = g, f,-

The boundary operator is natural, i.e. the following diagram commutes:

H,(X,A) —%~H,_(A) (11-45)

|2 |

0
The long sequence constructed from i, j and d is exact:

— == Hy (X, A) > H (X) —2> H,, (A) - - - (11-46)

iy J

Hy(X)

— — > H, (X, A)

Homotopic maps f, g satisfy f, = g,.
Excision property: Given (X, A) and U,V opens.t. U C A,U C V C A then

HX\U,A\U)=H(X,A) (1-47)

Dimension axiom: H,(pt) = 0 for all ¢ € Z ~ {0}.

Bodo Graumann



II. The Topological Index Page 38

Cohomology For a cohomology theory there are similar axioms. We have again a functor,
which now assigns the cohomology classes, denoted by HY(X, A). But now the functor is con-
travariant, i.e. for f:(X,A) — (Y, B) we get f*: H*(Y, B) - H*(X, A) and instead of (A2)
we have (gf)* = f*g". Also the boundary operator is replaced by a coboundary operator
0*: H*(A) - H*T!(X, A) which raises the degree. So in (A3) and (A4) we have to reverse
the direction of all arrows. (A1), (AS), (A6) and (A7) stay the same.

K-Theory To build a cohomology theory out of K we restrict ourself for now to compact
Hausdorff spaces X. We write K(X) := K(Vect(X)) and use the following notation: Vect X 2
E — [E] € K(X) for the projection onto K(X). For f: X — Y we take the pullback of vector
bundles f*: K(Y) — K(X) = K°(X). As in Theorem 85 (Properties of the Grothendieck Group),
K(X) carries a ring structure given by the direct sum @ and the tensor product ® of vector
bundles.

86. Definition: “Reduced K-Group”
Given a compact topological space X with marked point co we denote the injection co — X
by oo as well. Then the reduced K-group is

K(X, ) = ker o™ C K(X) (86.1)

If the basepoint is not relevant we may write K(X).

87. Definition: “First K-Cohomology Group”
For a pair (X, A) with A C X closed we set X/A as the space constructed from X by identifying
all points of A. Then

KX, A) := K(X/A,[A]) (87.1)

In the case A = @ we have to make an extra effort because [A] does not give a basepoint for
X/A. Thus we choose some new co & X and define (X/@) := (X U {o0}). Then

K°(X) = K(X U {0}, {oo}) = ker 0o* = { [E] - [F] | tk E| =k F|,} = K(X)

(87.2)
After defining a suitable cohomology class K! there is an exact sequence
KOX, A) -~ K°(x) —~ K°A) (11-48)
o T Bott periodicity la*
K'(A) =—— K'(X) = K'(X, 4)
i J

A corresponding K-homology is possible but rather complicated.
Furthermore there is a KK-theory by KASPAROV.
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88. Definition: “K-Theory with Compact Support”
If X is a locally compact Hausdorff space, we define

K(X) = K(X, {o0}) (88.1)

where X := X LI {oo} is the one-point (ALEXANDROV) compactification of X with infinite point
00. A neighbourhood basis of oo is given by

Upy,={X~K| KC X compact } (88.2)

Thus if X is compact, oo is an isolated point in X and, like in Definition 86 (Reduced K-Group),
we get that the notation K(X) is compatible with Definition 84 (GROTHENDIECK Group) where
S = Vect(X).

For a manifold M we write

K (M) = K(T* M) (88.3)

89. Lemma: Restriction Map

For a locally compact Hausdorff space X and an open subset U C X we define a projection
map under identification of the points X \ U:

RX—>X/X\U:U (89.1)

Then there is an induced ring homomorphism P*: K(U) - K(X).

I1.3. K-Theory and Bundle Complexes

In the following let X be a locally compact Hausdorff space. We will now derive a construction
of K(X) in terms of bundle complexes.

90. Definition: “Bundle Complex”
A finite sequence E; — X of continuous vector bundles together with a sequence of vector
bundle morphisms a; € C(X, A(E;, E,,)) forms a chain complex of vector bundles if ima; C
ker a;, |, which we simply call a bundle complex.

) Ay

(E,a):0 E° E" 0 (90.1)

Then over each point x € X this yields a complex of vector spaces (E,, a,) and we define
supp(E, @) := { xeX | (E,, a,) is not exact } . (90.2)
So when the homology of the complex is
F(E) :=Ket &/ 4., (90.3)

the support is the domain where the homology is non-trivial. We are only interested in complexes
with compact support and denote them by Z(X) and £"(X) when the length is fixed.
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91. Remark: Special Case

In particular any differential complex over a manifold M gives through its principal symbols
a bundle complex over T*M. If M is compact and the differential complex is elliptic, it has
compact support.

92. Definition: “Homotopic Complexes”
We say two complexes (E, @), (F, f) € L(X) are equivalent (E, @) ~ (F, p) iff there is a con-
tinuous homotopy (G, y) € L(X X [0, 1]) such that for i;: x — (x,t) we have

iy(G.y)=(E,®)  i{(G,y)=(F,p) (92.1)

Then the bundles E’ and F' have pairwise the same rank. We set
BX) = LX)/ (92.2)

93. Lemma:
Isomorphic complexes are automatically homotopic and thus represent the same class in €.

94. Remark: Representatives of Bundle Complexes

1. Any two complexes (E, @) and (F, ) that only differ on some compact set L. C X, are
homotopic, through y = ta + (1 — 1), because y = a = fon X \ L.

2. Given a complex (E, ) with @ defined only outside the compact set L C X we take ¢ €
C.(X) such that ¢ = 1 in a neighbourhood of L and consider (E, &) with

. 0, if x € L and

a(x) = ] (94.1)
(1 = ¢p(x))a(x), otherwise

to get an element of 6(X). This does not depend on the choice of ¢, because of (1).

3. Because ranks are equal for homotopic complexes, their lengths must also be equal. Thus
we may write €"(X) for &Z,(X)/ ~. But if we now divide out the (up to homotopy) ev-
erywhere exact complexes 6(X), we find that any element (E, a) € €(X)/€4(X) can be
represented as a complex of length 2:

(E.@):0 —E/erq ker a 0 (94.2)

where E :~@;l:o E,a= GB;’:O a; € XE) and @ = 0. That means the complexes
(E, @) and (E, @) have the same support and define the same homotopy class up to an exact
complex. We also write (E°, E', @) for those complexes of length 2.

95. Lemma:

G(X)/64(X) exhibits a commutative ring structure induced by the direct sum @ and tensor
product ® on Vect(X).
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Proof (95) Because of Remark 94 item 3 we can restrict ourselves to complexes of length 2.

e The usual direct sum of vector bundles induces a well-defined sum on 6(X)/6€,(X):

(E,q)+ (F,p)=(E® F.a® p) (95.1)
0—>E e plgr .0 (95.2)

is exact if v & supp(E, @) U supp(F, a), which is compact. The neutral element is repre-
sented by 6(X). To find an inverse for (E 0 E', a), choose a metric and consider the dual
complex (E', E°, a*). The sum (E°, E', @) @ (E', E°, a*) is homotopic to
(2%)

0—=E'@FE —*% _pO@E — 0 (95.3)
We cut it off outside the support: & := (1 — ¢) (2 “0* ) with ¢ € C(X,R) and |, = 1.
Then & is self-adjoint and invertible outside the support of @. Let spec &, = (4, ..., 4;)(v),
k = dimE° = dim E'. A; depends continuously on v, so #{4; > 0} is constant and
P_, P, are projections of constant rank. Thus with E = E° @ E' we have (E,&) =
(E.,a.)® (E_,&.). This is connected to the trivial complex (E.,id) @ (E_, —id) by the

homotopies
a, (N=0-na,,+tidg (95.4)
a., (@) :=0-na,—tidg_ (95.5)

where t € [0, 1]. As we are dealing with complex vector bundles, — id is homotopic to id.
Thus we have shown that (£, @) is homotopic to the trivial complex (E° @ E', id) and thus
there are indeed inverse elements wrt @.

e To construct a product we write (E, @) * (F, p) for:

0— ~FQF . FeF eE QF Y-E ®@F —-0 (95.6)
p=idp®F+a®idy, w=a®idp —idpy ®F (95.7)
~0_  -EeFPaE eF "™ HReF eE ®@F -0 (95.8)

Here ¢ and y are injective.
To see how this tensor product arises, we need to look at the following notions.

96. Definition: “Super Complex”

A super complex (E, a, €) over X is a bundle complex (E, @) together with a Z,-grading € €
C(X, Z(E)) such that « is odd, i.e.

eax+ae =0. (96.1)

In particular & should respect the Z grading of E, e(E') = E’, and be an involution, £ = id £
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97. Lemma: Representation of Super Complexes
Any super complex (E, a, €) is the sum of two super complexes (E;, a;, &) and (E,, a,, &,)
with €, and €, induced by the usual Z-grading. That means

idy  je2z
gl =1 fori=1,2. (97.1)
,. —idy je2Z

We will call these alternating super bundles.

98. Remark: Canonical Tensor Product
Given two alternating super bundles of length 1, (E;, a;,€;) with i = 1,2, the induced Z,-
gradinge =, @e,on E:= E,Q E, = (E? (<) Ell) ® (Eg (4] Ell) decomposes this space into
the parts E? ® Eg @ E 11 ® E21 and E? ® E21 (=) El1 ® Eg . So the resulting alternating bundle
(E, a, ) takes the form

0—=EQFE®E QE,—EQE,®E QE —=0, (98.1)
where we can define
a=0a; @idg, +6; Q@ ay. (98.2)

99. Theorem:
Writing ‘gg (X) for everywhere exact complexes in €"(X), we have

n
KX) = ®X)/g x) = TX)/gnx) (99.1)
for any n € N. Thus we will mostly write K(X) for the latter construction too.

100. Remark:
1. If X is compact, then the isomorphism from €(X)/6 to K(X) has the form

GX)3 Er ) (—1VIElkx) = 2(E) (100.1)
j=0

2. If in Definition 88 (K-Theory with Compact Support) X is not compact, i.e. oo is not
isolated, any element of K(X) has the form [E,] — [E,] plus [c0* E;j] = [c0™ E|] i.e. there
is an isomorphism a: E0| vo > Ei | g, for some compact set L. Thus is it plausible that
K(X) consists of such length 2 complexes (E,, £, a) as above.

101. Definition: ‘“External Product in K-Theory”

Let X,Y be locally compact Hausdorft spaces and take (E, @) € Z(X), (F, p) € &;(Y) now
we have bundle over X X Y as:

(ER P, = E,®F, (101.1)
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Wlog take n = 1 then we have sequences

(E, ): 0 E0 2, E! 0 (101.2)

0
F . E! 0

(F,p):0 E°

with compact support. Now we could look at

0—=EORF 2 FlgF — >0 (101.3)

X8
0—=E'RF "2 EIRF — >0

but this complex does not have compact support. Thus we must use a more complicated con-
struction:

®I ;1 15, ®p
—_—

ERFO0— E'QF'- AL

1
E'RF'e E'°R F! E'F'—=0

(101.4)
Now E [X] F has compact support.

So it is not natural to always work with complexes of a fixed length. But of course we can
again reduce E [X] F to length 1. Now there is a bilinear map:

KX ® K 2 K(X x V) (101.5)

Assume next that X, Y = V, W € Vect(M) then the diagonal map A: M — M X M induces by the
pull-back a map (4*)*: K(V) ® K(W) - K(V® W). We may take W= { (x,0) | x € M } ~ M.
Then we have the map K(V) ® K(M) — K(V), i.e. K(V) is a K(M) (bi-)module.

102. Definition: “Homogeneous Complex”
In order to define the notion of homogeneity we need to restrict ourselfs to a special kind of
complexes. Let V' € Vect(M) with projection z and consider a complex (E, @) over V s.t. there
are E' € Vect(M) with

E' =7*E' (102.1)

Hence E;U = {Av} X E,,, and Q(Eiu, E;:l) o E(E;(U), E;:UI)) forany v € V. We call (E, a)
homogeneous of degree m € R if

o), = "o, € LAE, ) ET) (102.2)

We denote the set of all such complexes by "@(V) and write "E4(V) = "GV) N G, (V). As
mentioned before in Remark 94 item 1 (Representatives of Bundle Complexes), it is sufficient to
have such a complex defined outside a compact set, take e.g. the following
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103. Definition: “Sphere Bundle” and ‘“Ball Bundle”

Introduce now an Euclidean metric ||-|| on V' and define for R € R™:
By(V):={veV||v| <R} ball bundle
Sr(V) = dBg(V) sphere bundle

104. Theorem:

In addition to the isomorphisms in Theorem 99 we also have

"CW gy = CW g = KD (104.1)

for m > 1. So we can take representatives which are homogeneous of any such degree for K-
theory.

Proof (104) Take a complex (E, a) of compact support, contained in Sg(V) for some R > O,
and consider the pullback under the map

v llvll < R
h:Vx[0,1] 3 (v,t) — =R (104.2)
tRﬁ + (1 —1tv otherwise

h*(E,a) € €"(Vx [0, 1]). (104.3)

Then with h,(v) = h(t,v) we get hy = id,, and that A, is the projection onto Bg(V). Thus we
can conclude that h;(E, a) = (E, a) and that h’f(E, «) is homogeneous of degree 0. If we now
use the scaling homotopy (v,t) = t||v||"v + (1 — t)v we get a complex which is homogeneous
of degree m and still homotopic to (E, a). So these complexes only depend on their restriction to
By (V) for R big enough.

105. Theorem: Continuous and Smooth Vector Bundles

Every topological vector bundle over a smooth manifold is equivalent to a smooth one. The in
this way defined smooth structure is unique. Then for every continuous bundle map there is an
equivalent smooth bundle map.

Proof (105) Let E™) — M be a topological vector bundle, i.e. there are (&uy)u.vey With
oy °© 6;1 =gyy € C(UNV,GL(N,C)) and wlog take V to be coordinate neighbourhood. Now
choose smooth approximations g5}, € C*(U NV, GL(N, C)) such that

gE/OV = Gf/o ° (0'10/0)_1 = GZO ° 0'51 o0y o(y;l o0y o (610/0)_1 = fu°8uy of;l (105.1)
::fU ::f;l

This is an equivalent coclycle; hence defines a topological equivalent bundle. Bundle maps can
be approximated similarily. Compare also [Hir76, Chapter 4 Theorem 3.5].

106. Corollary: Smooth K-Theory

In either construction of K (M) = K(T* M) in subsection I1.2 (Some Elements of K-Theory)
or subsection I1.3 (K-Theory and Bundle Complexes) instead of starting with topological vector
bundles Vect(T* M) we may as well choose only smooth ones to get the same K-groups.
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107. Lemma: Logarithmic Law
For (Ey, E,, a), (E;, E,, p) € K(X) we have

(Eg. E1,0) ® (Ey, Ey, p) = (Ey, E,, af) (107.1)

Proof (107) Add the trivial bundle (E,, E,,id).

108. Definition: “Analytic Index”
Let M be a compact smooth manifold and (Ey, E},a) € K, (M), wlog a homogeneous of
degree 0 and support contained in M C T* M. Now choose any cut-off function ¢ with compact
support and ¢|,, = 1. Then take the following pseudodifferential operator with symbol ¢pa

Op(¢pau(x) = (27)"2 / "8 pa(x, E)a(&)dé (108.1)

TP M
Then we define the analytic index as

ind,: K (M) = Z (108.2)
ind,(E,, E,, a) == ind Op(¢ha) (108.3)

109. Theorem:
The analytic index is well-defined and a non-trivial ring homomorphism K,,(M) — Z.

Proof (109) We have to show that the index is independent of the choices made. Take any other
choice of representing complexes (F°, F!, #). Then by the homotopy we can identify the bundles
and get homotopic symbols a, f over the same bundles. Now their index is the same because of
stability.

For complexes in 6, we get an invertible symbol, homogeneous of order 0 which defines an
invertible operator in L>(M, E). Hence the index is 0.

From Lemma 107 (Logarithmic Law) we get additivity of the index:

ind (&, @ &) =ind, & +ind, &, (109.1)
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A. Misc

These parts need clean-up and have to be merged with the main part.

A.1. K-Theory

Assume now that V' — X is a complex vectorbundle over a smooth manifold. Then there is a
beautiful, important complex over V':

imw(v) iw(v) iw(v)

(AV):0 —= AV, ) —= AV —— .. —= AV () ——=0 (A-1)

T

is exact for v # 0. It is called the algebraic de Rham complex, a complex of length k, represents
the element A, in K(V).
Take a elliptic operator Q € YDO,(M, E°, E") for a closed oriented (Riemannian) manifold

with T*M - M. Then the symbol gives us a complex

0 z*E° 2 z*E! 0

where Q is invertible on T*M ~ M (i.e. outside a compact set).

Note: Above is a complex of length 1 Put z*E := z*E® @ z*E' with grading €|,.z0 = id,
g 8 ) which satisfies d> = 0 and
ed+de =0,1i.e. disodd. Sowe have atriple & := (E, €, d) where (E, €) is a superbundle and d
is an odd differential. Now consider any such triple on T*M and put

%(Cg) = ker C%md = ker d%m d- (2] ker d%m d+ = %+(Cg) I %—(%) (A-2)

Now assume that Z(&) = 0 = kerdt = imd~. So if d* (previously Q) is invertible, then
d- =0.

€|p1 = —id. So we canregard Q|. 7*E — 7n°E ~ d := (

Remark If

d() dn—l

&,:0 E° E" 0

is any complex, then we can form again

n n
E=@PE.d=Pd" &g, =id, Elg_ E¥' =id (A-3)
i=0 i=0
= & = (E, d, ) is a differential super bundle (dsb) and Z(&,)) ~ Z*(&) & # ()
(A-4)
For X a locally compact Hausdorff space, dsVect,,,,(X) = isomorphism classes of {& =
(E,d,e)}.
isom Iso
¢: & — &' homoms ¢ €Hom (E,E'),d'¢p = pd, e'p = ¢pe (A-5)
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Homotopy &, ~ &, iff there is (E, d, €) over I X X s.t. i;‘E =E;,j=0,1.

Functoriality X Lo X'« & then [7&" € dsVect,,,,(X) only if f is proper. (i, is proper
for all 1)) E.g. 7: T*M — M is not proper since (M)=T*M.
Operations

1. %1 @ g2 = (El @ E2,£1 @52, dl @dz) =: (E,g, d) S dSVectcomp
supp &, N supp &, since Z(&, , ® &, ) = (&, ) ® (&, ).

(X)withsupp &, ® &, C

2. 8,®8, = (E,QF,,£,®¢,,d,Qidg, +£,®d,) =: (E,¢,d). Then d* = (d, Qidg, +£,®
dy)(d, Qidg, +&, ® dy) = d} @ idg, +idy, ®d5 +die; @ dy +£,d; @ dy =0.

110. Lemma:
LIfE ~&,j=12then& @& ~& ®& and & ® &, ~ & @ &,.

2. (&, ® 8, ~ H(&))Q H(&,) (KUNETH formula) So supp & ® &, C supp &; Usupp &,
and

E/QE,=(E/QE)®E ®E,)®(E|®E,®E| ®E)) (110.1)
Proof (110) Introduce metrics A%, j=12st e = e;f and now

d* = d7 ®@idy, +e, ® d} (110.2)
Put

* * . ) (110.3)
+d151 ® d2 +61d1 ® d2 = Al ®1dE2 +1dE] ®A2

Recall the Hodge Theorem: (&) ~ ker A. So we get 4 = (Alxjo,xjo) + }Ljollxjoll2 = (4, +

Apx; . x; ) A; =0and 4,x; =0.

%(X) = homotopy classes of isom. classes of dsb with compact support and ,(X) are
those with empty support.

111. Theorem:
¢(X) is a commutative ring, €(X) is an ideal.

112. Definition: ’

K(X) := %()O/cgg( X (112.1)

is a commutative ring.
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Remark If &, and &, are isomorphic, then they are also homotopic.

Proof (112) Represent them by pullbacks &; = f j*C, J =0, 1 and we have a homotopy (f),e0.1
s.t. f;‘c = &,. This also works for dsb.

Remark If X is compact, we may consider all superbundles, in particular 0 - E° — 0 — 0.
Thus, [EO] is well-defined and for any dsb & we get [&] = [EO] — [El].

113. Theorem:
Let & = (E, €,d) be as dsb with compact support. Then [&] © &' = (E’,¢’,d") where

1. &’ is smooth and there is Eyy — M smooth, s.t. E' = 7"Ey = E| ., ~ Ej, and
d'(x, A8) = A"d' (x, &), for any m > 0.
114. Lemma:
If &,,&, are dsb

comp OVEr T*M and supp &, U supp &, C B(T*M), then if &, |BI(T*M) =

%2|BI(T*M) we have [&,] = [&,].

115. Theorem:
Every element a of K(T*M) for z:T*M — M over a oriented Riemannian manifold, can
represented by some & = (7*E, e*e, d) where €, = (E,ep) € Vect; (M) and d is a smooth
differential such that

d(x,8) = Iflld(x,%)(l — $)IED (115.1)

where € R, and ¢ € C°(R,) with ¢ = 1 near 0.

Proof (115) By defining E := iSE = 7" E,,; via the homotopy i,(v) := tv we have constructed
the bundle.

.

E——T'M M
~
Im

We find & = (E',€’,d") € Vect, (T* M) representing a. Then

e if supp &’ = @ then we may assume that the homology is everywhere 0. Then we can
deform d/(x,&) = d'(x,t£), so a is represented by (7" E’|M,7r* £’|M,7r*(d’|M)). This
bundle is homogeneous of degree 0.
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e Otherwise set

d,(x. ) = |E]'d(x, %) = d(x, |¢|é) = & 0Dd(x, |¢|’|§—|><z¢ (1= @)D
(115.2)
= dy(x.8) = |:|’d(x,%>(1 — ) (115.3)

where we assumed wlog that supp & C B;(T*M).

A.2. Topological Index
We look now at K(T'M) by taking a metric and using the induced isomorphism. Then K(Tp,) =Z.
K(T,) =7
i ben (ﬂ)=7r;, ACN ®7z:;,g
K(CM)

l ”pt

T,

where ¢ is the Thom isomorphism.

ﬂ';k(AE ——F

| l

AE X

(7% AE), = (13 A”E), ® (7, A" E), (A-6)

Now the Clifford multiplication ¢ £ (e) gives a map between these two parts.

Exercise Different metrics give homotopic complexes here.

We regard C"V as TRY. Then embedd (Whitney) M into R" via i, and then Ti,: TM — TR"
(Due to Grothendieck) i shriek. But then K(i)): K(CN) - K(TM) goes in the wrong direction
because K is contravariant.

Simplest Case Set M := R"™ which can be imbedded into any R"™* Now TR” = R" @ R" =
C™ and TR = R™* @ R™* = R" @ R” @ R* @ R¥ = TR" @ C* =: EF - TR™. So the
tangent bundle of the manifold we embed in, is a complex vector bundle over the original tangent
bundle. Then

K(TR™ = K(EF) 22 k(rR™) (A-7)
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Then we can define an index as

ind, = ¢_, b (A-8)

116. Lemma: Tangent bundles of vector bundles
Let E — M be any vector bundle, then

TE~TM®E®E (116.1)

Proof (116) Lookat TM @ E@® E as a trivial bundle over E so we could define a isomorphism
TE ~ (z5)*(TM & E).
Exercise!

Consider now the general case Take again M < R™**. We can split TR™**| =TM" @& N
where N is the normal bundle, defined by a certain metric.

As M is closed, there is an open tubular neighbourhood 7, M C R™** around M. But T, M ~
B,(N) ~ N. Thus TN can be viewed as an open subset of TR™k,

117. Lemma:
K(X) = ker(iy: K(X) = 2)

Proof (117) See [Seg68].
So together with the restriction map i,.: K(U) — K(X) we get K(T'M) fﬁ) K(E) =, K(TR™*k)

"
K(C™) =<5 K(T,).

118. Lemma:
Let M™ < N" be a smooth embedding. This defines i\: K(TM) — K(TN) such that (ji), =
Jriy

119. Lemma:
Given two embeddings i"): M — E©) = R™*"” then the topological index functions coincide.

Proof (119) Consider i @ i': M — E @ E’ and the family i @ si’, s € [0, 1]. This gives the
following diagramm:

K(TM)

bre!

K(TE) KME® E")

K(pt)
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120. Lemma: Properties

L ind| ¢ =idy

2. ind, commutes with i,.

i

K(TM) K(TN)
ind,M

Z

Now every homomorphism with these properties actually coincides with the topological index.
Proving the second property for the analytical index is really hard.

A.3. Another Look at ydos

Local theory in open U C R™.

Sym"(U) = { p(x.&: Ux R” = C| sup | D D{p(x. O] < C (&)} (A-9)

xeK
KcU compact

Define an operator

p(x, D)u(x) = Op(p)u(x) := / ¢ p(x, Ha@) dg,  dE = (2m)" 7 d¢ (A-10)

m

which is linear 2(U) — &(U)

121. Definition: “Pseudodifferential Operator”
We define a space of operators ¥DO™(U) as follows

1. P-2(U) - &(U) is continuous
2. for f € D(U) the commutator
py(x.8) = AP fl9) € SMU) (121.1)
for all (x, &) € U x R™.

3. We define YCDO™(U) as the subset of P € ¥DO"(U) with the property that p, €
Sym7;(U), f € 2(U) and

q € Symg(U) < lim 17"¢(x,18) = 4(x, &) # 0 (121.2)

We then define p(x, &) := pr(x,8) for f € D(U), f(x) = 1. This is well-defined.
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122. Theorem: SEELEY, HORMANDER, KOHN-NIRENBERG
The spaces YDO™(U) and YCDO™(U) are invariant under diffeomorphisms. In particular

P(x, &) = p(y(x), dy(x)(£)) (122.1)

for p € YCDO(U) and yw € Diff(U). So p is invariantly defined on T*U.

Now we have fairly obvious extensions to compact manifolds M™ and vector bundles E, F —
M, to get.

YCDO™(M, E, F) (A-11)

In particular p is now invariantly defined on 7*M ~ M and p(x,$) € Lx"E ¢, 7" F(, ) and
invertible iff P is elliptic.

123. Theorem:
Let PO € YCDO(M, E, F) then

1. PO = PO
2. if there are Hermitian metrics A%, hf and a Riemannian metric g’ then P* = p*.

3. For any m € N there is an exact sequence:

0 — WYCDO"™ (M, E, H> YCDO"(M, E, F) -~ Sym"(M, E, F) — 0
(123.1)

P e YCDO(M, E) is bounded in H? iff I < s, compact if I < s and trace class if I < s — m.

A.4. The Topological Index

We need to find another natural homomorphism K(7*M) — Z which equals ind,.

124. Lemma:
K(X) = K(X) = ker(i},: K(X) = Z = K(pt)

Drawback For a non-compact manifold N, N is not a manifold in general. Note that

(T My = BT"M) /g 1+ ppy (A-12)

Note T*M can be replaced by any real (smooth) vector bundle over M. Let V, W be vector
bundles over M. Then we can form the exterior tensor product VEH W — M X N with fibre

VE W)y =V ®W,.
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Seminar Tasks

e Proof BOTT’s periodicity theorem for complex K-theory and show the Thom isomorphism.

e Descriptions of C-vector bundles and notion of equivalence
— as fibre bundles, using cocycles and their equivalence [STEENROD]

— as continuous maps f: X — Gr"(C®) into the Grassmannian, using homotopy equiv-
alence [MILNOR?]

— as idempotents in finitely generated projective modules over C*(X), using conju-
gation [SERRE-SWAN-Theorem, CONNES]
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